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The radiation (generation) of pressure waves by a spherical cavity is investigated using the non-linear time-transformation method 
in wave initial-boundary-value problems with specified Neumann-type boundary conditions on a moving and partially permeable 
boundary [1, 2]. The results obtained reflect the hydrodynamic processes which accompany underwater explosions of different 
physical kinds and of limited power. © 1999 Elsevier Science Ltd. All rights reserved. 

1. P H Y S I C A L  P R E R E Q U I S I T E S  A N D  
T H E  M A T H E M A T I C A L  F O R M U L A T I O N  O F  T H E  P R O B L E M  

When an energy pulse is liberated in a limited volume of liquid, vapour-gas or plasma cavities are formed, 
often of spherical form, and pressure waves are generated when these expand (collapse). The dynamics 
of a cavity are determined both by the physical processes in the cavity and by the parameters of the liquid 
medium. The kinematic characteristics of the cavity (the initial value of the radius, the variation of the 
radius with time and the inflow of liquid) are unknown in advance and must be determined by solving 
the overall problem, which includes both the internal physical problem and the external hydrodynamic 
one. However, the overall problem can only be solved numerically. The external problem can, however, 
be solved analytically, which is of independent interest. Thus, the determination of the external pressure 
field in the liquid from the results of optimal measurements of the radius of the channel over time is 
the basis for diagnostics of the pressure in the plasma of a high-voltage electric discharge in a liquid [3]. 

Confining ourselves to small values of the velocity of the liquid with respect to the velocity of sound 
in it, and simultaneously bearing in mind the finite nature of the amplitude of the displacement of the 
cavity boundary, we will describe the dynamics of the perturbed motion of the liquid by a linear wave 
equation, while the Neumann boundary condition will be specified on the moving boundary and its 
instantaneous position. The correctness of this approach and its area of applicability were discussed 
previously in [2, 4, 5]. Hence, assuming the motion of the liquid to be potential, we can write the initial- 
boundary-value problem in the form 

~2q~ ÷ 1 B~ 1 ~2~0 = 0 (1.1) 
~ r  r ~r Co 2 13t 2 

B~ 
r = R(t): ~ =us(t) (1.2) 

B~0 
t = 0 :  9 = - ~ t  =0, R=Ro (1.3) 

where q> is the potential of the velocities of perturbed motion of the liquid, r is the coordinate, t is the 
time, Co is the velocity of sound, R = R(t) is the variation of the radius of the cavity with time and us is 
the velocity of the particles of liquid on the contact boundary of the cavity. 

From the known potential of the velocities, the velocity field and the pressure field in the linear 
approximation are given by the expressions 

u(r,t)=~r, P(r,t)=-po-~-f (1.4) 
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We will consider the kinematic boundary condition (1.2) in more detail. In the case of an infinitesimal pulsation 
amplitude of the cavity, the boundary condition is specified on the initial position of the boundary [6, 7], as was 
done for the non-stationary problem [6] and for the case of the radiation of harmonic waves [7]. When the boundary 
of the cavity is impermeable, both in the ease of a small amplitude [6, 7] and in the case of the motion of the boundary 
[8], the velocity of the liquid on the contact boundary is equal to the velocity of motion of the cavity wall, i.e. 
us(t) = dR/dt. In the general case when the inflated envelope is penetrable [9], or there is heat and mass transfer 
through the cavity wall [10, 11], the radial component of the velocity of the liquid is not equal to the radial velocity 
of motion of the contact boundary. Thus [10, 11] 

osft)= dR q (1.5) 
dt TOo 

where q is the thermal power and x is the specific heat of vaporization of the surrounding liquid. When the cavity 
pulsates in the superheated liquid [10], heat is transferred by conduction from the liquid, i.e. q = ZdT/dr when 
r ffi R(t), where k is the thermal conductivity. As the plasma cavity expands [11] the heat is transferred by radiation 
of hot plasma, i.e. q = aT 4, where a is the Stefan-Boltzmann constant and T is the plasma temperature. 

The problem is completely defined in the numerical solution. In order to obtain a unique analytic solution it is 
also necessary to specify the radiation condition [12-14]. The radiation condition for harmonic waves enables us 
to distinguish from all the solutions of Eq. (1.1) [12] those which correspond to expanding spherical waves. This 
condition is trivial for a symmetrical form of the wave solution. In the case of non-harmonic waves, the radiation 
condition is transformed [13, 14] into the causality principle, the essence of which is that all functions of the wave 
field, which depend on time (including in complex form), must vanish for a negative value of the wave argument. 
The analogue of the radiation condition for the problem of a high-power underwater explosion is the condition 
on the shock-wave front [15]. 

2. A N A L Y T I C  S O L U T I O N  OF THE I N I T I A L - B O U N D A R Y - V A L U E  
P R O B L E M  W I T H  MOVABLE B O U N D A R I E S  IN T H E  G E N E R A L  CASE 

We will seek a solution of the initial-boundary-value problem with movable boundaries (1.1)-(1.3), 
where, in the general case, by (1.5), the radial velocity of the liquid on the boundary is not equal to the 
rate of change of the sphere radius, using the method of non-linear time conversion [1, 2]. We write 
the solution of wave equation (1.1), which satisfies initial conditions (1.3) and the radiation condition 

q~(r,t)f f ( t ° ) l r ,  t o = t - ( r - R o ) l c  o 3 0  (2.1) 

where t o is the wave argument andf i s  a so-far unknown function. When solution (2.1) satisfies boundary 
condition (1.2), we obtain the representation for the function f in the form 

I ! f (~)=-coEw(  ~ C+ Ew(~,) 

=exp[-co! 
(2.2) 

where ~ is a variable which has the meaning of "new time", which is introduced by means of the 
transformation 

t -  (R(t) - Ro)lco = ~ (2.3) 

while t = w(~) is the inversion of the function ~(t). We will assume the constant of integration C in 
(2.2), corresponding to the zero initial conditions (1.3), to be equal to zero. Note that, when the condition 

2 ((R(t) - Ro)/(Cot)) "~ 1 is satisfied for any form of the function R(t), which has no discontinuities, the 
inversion t = w(~) is possible and unique. Now, using representations (2.1) and (2.2) we obtain, after 
reduction, the required velocity potential in the form 

R(w(t°)) "(w(t°)),  tl~(w(t°))= E ( w ( t ° ) ) ~ i ° ) ~  - I---~)  dt (2.4) 
q~(r,t) = -c  o ~ o ( ) ~, Co 
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For an impermeable boundary when us(t) = dR/dt, solution (2.4) becomes the solution obtained prev- 
iously [2]. When the displacement of the impermeable boundary has a small amplitude ((R - Ro)/Ro) 2 = 
(us/c0) 2 ,~ 1, we must take R = R~ w(t °) = t o in (2.4). We then obtain Landau's solution [6]. 

Using the representation for the velocity potential (2.4), by the second formula of (1.4) we obtain 
the pressure function at a point of the wave zone 

(2.5) 

Taking r = R(t) and r = Ro + Cot successively in (2.6), we obtain the following representations for 
the pressure on the cavity wall and the pressure on the wave front, respectively 

_ o, (+o) 
--O-s(t)- -~(.t!, Pc(t) - (2.6) 

"ff s ( t )  R( t )  1 + t " 

~c ° pc us ~ Cot 

It is of independent interest to obtain an equation relating the pressure at a point in the wave zone 
and the pressure on the cavity wall. 

Using the second formula of (1.4) we can write the following expressions for the pressures 

Po fj (t  R ( 0 -  Ro ) (2.7) P(r ' t )=-P°  Ps(t)=-~'~'~ I~ - Co 

where fl(t) = df/dt. The required relation between the pressure functions follows from (2.7), namely 

p,(t) = (2.8) 
Co 

3. M O T I O N  OF THE BOUNDARY WITH CONSTANT V E L O C I T Y  

We will assume that, at the instant of time t = 0, the partially permeable cavity wall of radius R0 begins 
to move with constant velocity, i.e. R(t) = Ro + t)ot. We will also assume that the radial velocity of the 
liquid on the movable contact boundary is also constant but ol ~< o0. Transformation (2.3) then takes 
the form t(1 - M0) = ~, where M0 = t)0/c0, whence it follows that 

R(w(t°)) = Roy(t°), y(t °) = I +Oo t°/[Ro(l - Mo)] (3.1) 

and the expression for the velocity potential (2.4) takes the form 

2 

(p(r,t) =-coM I P~ y-a_ a..z .(Ya+ _ 1); or± = ~00 + 1, M, = V--L (3.2) 
r ~+ Co 

We obtain the following expressions for the velocity and pressure fields 

(3.3) 

ff(r,t)= 2M, ~-o t~ '¥( l  + - ~ - y  -a+ ) (3.4) 

Taking r = R0 + u0t in (3.3) we obtain the identity u-s(t) = My Taking r = R0 + u0t, from expression 
(3.4) we obtain a representation for the pressure on the cavity wall 

[, ] o .  co_,   35, 
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For an impermeable boundary, when u0 = vl and M0 = M1, solution (3.2) and (3.4) becomes the 
solution obtained earlier [2]. Assuming Ml = M0 and R0 = 0 in (3.2)-(3.5) we arrive at the well-known 
Taylor solution [8]. 

Further, taking r = R0 + cot in (3.4), we obtain the following representation for the pressure on the 
wave front 

Pc(t)= Mi/(l+t), t=Cot/ Ro (3.6) 

We now obtain the asymptotic values of (3.5) for small and large values of the time 

~.,(0) = M I, ~ ( - - )  = 2M I let+ (3.7) 

Note that the solution for the non-zero value of the initial radius of the cavity (3.5) reduces to the 
solution for the zeroth initial radius for large values of the time [8]. This transition is related to the 
idea of the time x of the transient [2], found from the equation 

[~s(o)- ~ (**)]/[~ (x ) -  ~ ( ~ ) ]  = e (3.8) 

where ps(x) is the value of the pressure function (3.5) when t = x, while/Ss(0),/~s(oo) are found from 
(3.8). From (3.8) we obtain 

"t= R° (eim+-l), X= R° , Mo- ->0  (3.9) 
coMo coo + u o )  

The second method of estimating the time taken for the system to reach the self-similar state involves 
specifying the relative error of the pressure 5 at the instant of time x with respect to the value of the 
pressure (3.7) for large values of the time 

[ ~ ( ~ ) -  P,(**)]/.~,(**) = a (3.10) 

Solving (3.10) for x and taking (3.7) into account we obtain 

(3.11) 

If in (3.5) we take the quantities M0 and M1 with negative signs, we obtain a representation for the 
pressure on the cavity wall when it collapses at a constant rate in the form R(t) = R0 - oot. The pressure 
on the cavity wall, being negative (/Ss(0) -- -M1) when t -- 0, increases with time and becomes zero when 

'= oMoL - EJ 1 
(3.12) 

When the time increases further, the pressure becomes a positive quantity and, when R = 0, it takes 
the value/~s = 2M1/a. 

In Figs 1 and 2 we show the results of a calculation of the pressure on the wall of an impermeable cavity when 
the radius increases at a constant rate. In Fig. 1 we show a graph of the dimensionless pressure against the 
dimensionless time t = cot/Ro for different numbers M0 for the same value of the initial radius R0. In Fig. 2 we 
show graphs of  the pressure for the same value of the rate of expansion of the cavity but different values of the 
initial radius R0. The dashed curves correspond to the pressure on the wave front. 

In Fig. 3 we show the results of a calculation of the pressure on the wall when a cavity of initial radius R0 collapses 
for different values of  M0. The dashed curve corresponds to the instant R(t) = O. 

4. PERIODIC COLLAPSE OF A CAVITY 

Periodic collapse of a cavity occurs during an underwater explosion. The cavity usually contains three- 
four decaying pulses, generating the corresponding number of pressure pulses. Electrical explosions in 
water, as experiment shows, can give a form of the pressure function such that the second pulse has a 
greater amplitude than the first. The single collapse of a bubble was investigated in [17, 18]. A more 
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complex problem is the problem of the generation of pressure waves by a spherical cavity which pulsates 
with periodic collapse [19]. 

Following the approach used previously [19], we will consider the external hydrodynamic problem, 
assuming pulsations in the form 

R(t)-- R o + R~ I sino~0t I (4.1) 

where Ro is the cavity radius at the instant of time t = 0, RI is the pulsation amplitude and coo is the 
pulsation frequency, which is related to the pulsation period Xo by the relation coo = ~/~0. Using (4.1) 
we obtain the following expression for the velocity of motion of the cavity wall 

v,(t)=OoCOSmo(t-i~o), i=0,I,2 ..... v0 =R0r~ 0 (4.2) 

Note that the rate of expansion of the cavity at the initial stage and the rate of collapse at the final 
stage are equal to --+t~0, respectively. The formal solution of the problem is described by (2.6), where 
the kinematics of the cavity is given by expressions (4.1) and (4.2). 
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We will estimate the amplitude of the first and second pressure pulses on the cavity wall. At the 
beginning of the cavity expansion, according to (4.1) and (4.2), the motion of the wall occurs with constant 
velocity o0. The amplitude of the first pressure on the wall, by (3.7), is equal to M0. The amplitude of 
the first pressure pulse on the wall, by (3.7), is equal to M0. The amplitude of the second pulse consists 
of two components:/~z =/~zl +/~z2, where/~21 is the value of the pressure, equal to the pressure pulse 
from the second expansion of the cavity and, for a loss-free process a is equal to,if1, and,o21 is the pressure 
at the end of the first cavity collapse. By (3.5) we have/$22 = 2M~/(1 -M0). Substituting the values of 
the components of the pressure into the expression for the amplitude and the second pulse, we obtain 

~ = MoO + Mo)/(l- Mo) > P~ (4.3) 

Hence, in the case of a periodic collapse of the cavity without losses, as given by (4.1), the amplitude 
of the second pulse is always greater than that of the first. If the losses are taken into account, no unique 
solution can be reached. 

In Fig. 4 we show the results of a numerical calculation of the pressure acting on the wall of an impermeable 
cavity, as given by (2.7), for three forms of cavity pulsation 

R(t) = R o + kR I Isin O.~otl (4.4) 

where k = 1, 2, 4 and the following values are assumed: R0 = 0.275 x 10 -3 m, R0 = 0.125 × 10 -3 m and co o = 
1 0.3 x 106 s-. The dashed curves correspond to the variation of the cavity radius given by (4.4). The continuous 

curves describe the behaviour of the pressure function on the cavity wail. 

5. S U P E R P O S I T I O N  OF S M A L L - A M P L I T U D E  PULSATIONS ON THE 
L I N E A R  G R O W T H  RATE OF THE S P H E R E  R A D I U S  

The problem of the generation of pressure waves when pulsations are superimposed on the linear 
growth rate of the cavity radius arises when considering the rising from a great depth of a pulsating 
cavity which has been formed as a result of an underwater explosion. This case is also characteristic 
for a high-voltage electric discharge in water, for a controlled rate of energy input into the channel in 
the form of a sequence of pulses [20]. 

Assuming that the variation of the cavity radius with time is known [20], we can write it in the form 

R(t) =/C o +Uot + R,f(O)ot ), (R, / R) ~ '< I (5. i) 

where R0 is the cavity radius at the instant of time t = 0, t)0 is the linear growth rate of the cavity radius, 
R1 is the amplitude of small pulsations, f is a certain periodic function, describing the pulsations, and 
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COo is the pulsation frequency. From (5.1) we obtain the following representation for the velocity of  motion 
of  the cavity boundary 

us(t)=Vo +vi(t), vi(t)--v,ft({%t) (5.2) 

vI=R,{o o, fi=df/dt 

where t) I is the amplitude of the rate of pulsations. 
Taking into account the smallness of the pulsation amplitude and the fact that the velocities t) 0 and 

o I are comparable with one another in the boundary condition of problem (1.2), we can assume 

R(t) = R o +v0t, us(t ) =v o +vj~(t) (5.3) 

Substituting (5.3) into the representation for the pressure on the cavity wall (2.6), we obtain 

Ps = Psl (t) + Ps2 (t) (5.4) 

(5.5) 

( l  t, t ,:/Mo 1 
P,2 = M I  A ( t ) -  2R ° ~, , ,02 0 

(5.6) 

The first component  of the pressure (5.5) in the general sum (5.4) is the result of the linear increase 
in the cavity radius. This is a continuous function of time. As shown previously, it is close to exponential, 
and for large values of  time takes a constant value 2M~/(1 + M0). The second component  of the pressure 
(5.6) is determined by the nature of the pulsations, but it also depends on the rate of  linear expansion, 
which suggests a breakdown in the superposition principle in problems with moving boundaries. 

As an example, we will consider the function which describes the pulsations in the form 

f(t%t) = sin 2 tOO t (5 .7)  

We obtain the pressure function at a point in the wave zone from (2.8), which, for the specific case (5.7), takes 
the form 

In Fig. 5 we show the results of a calculation of the pressure function: 1--on the cavity wall, 2--at a point with 
coordinate r/Ro = 5, and 3--at  a point with coordinate r/Ro = 25. The intersection of the curves denotes the arrival 
of a pressure wave at the given point of the field. The oscillation period of the pressure function on the cavity wall 
is equal to the cavity pulsation period x0 = 2n/O~o, while the period of the pressure function at a point in the wave 
zone decreases in accordance with expression (5.8) xl = ~0/(1 + M0), which indicates the occurrence of the Doppler 
effect. 
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